This chapter describes a software architecture for processing big-data analytics considering the complete compute continuum, from the edge to the cloud. The new generation of smart systems requires processing a vast amount of diverse information from distributed data sources. The software architecture presented in this chapter addresses two main challenges. On the one hand, a new elasticity concept enables smart systems to satisfy the performance requirements of extreme-scale analytics workloads. By extending the elasticity concept (known at cloud side) across the compute continuum in a fog computing environment, combined with the usage of advanced heterogeneous hardware architectures at the edge side, the capabilities of the extreme-scale analytics can significantly increase, integrating both responsive data-in-motion and latent data-at-rest analytics into a single solution. On the other hand, the software architecture also focuses on the fulfilment of the non-functional properties inherited from smart systems, such as real-time, energy-efficiency, communication quality and security, that are of paramount importance for many application domains such as smart cities, smart mobility and smart manufacturing.
Keywords:

Excerpt from: A. Serrano M, et al. (2021) An Elastic Software Architecture for Extreme-Scale Big Data Analytics. In: Curry E., Auer S., Berre A. J., Metzger A., Perez M. S., Zillner S. (eds) Technologies and Applications for Big Data Value. Springer, Cham.